

F L Z -8E系列 竹节纱智能控制器 使 用 手 册

V1.00

- 具有良好的图形操作界面
- 具有多种纺纱模式功能
- 节长、节距和粗度任意设定
- 开关车竹节不失真
- 运行过程中突然停电不断头
- 具有多品种记忆功能
- 竹节数据自由导出导入
- 具有自动报警停车功能

无锡市灵特电子仪器设备有限公司

目 录

—.	收	女货时的检查	2
二.	拐	支术指标	2
三.	多	安装前的准备事项	2
四.	酉	己线	4
五.	杉	几械改造及安装	5
六.	섥	操作面板说明	7
	1.	通电	7
	2.	功能设定	8
	3.	设备参数	8
	4.	运行数据	11
	5.	品种管理	13
	6.	辅助功能	15
	7.	产量统计	16
	8.	报警记录	16
	9.	工作模式	17
七.	मे	十算与分析	17
	1.	FA502	17
	2.	A513	_
	3.		
	4.		
	5. c	FA507 EJM128K	
1/		EJM128K R养检查及注意事项	
		·*乔位恒及往息争坝	

一. 收货时的检查

收到 FLZ 系列竹节纱控制器以后,请顺序清查下列项目:

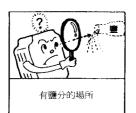
- 1、 货品上铭牌规格是否符合您所订货之要求?
- 2、 对照箱中装箱单检查零配件是否齐全?
- 3、 是否有因搬送造成损坏?
- 4、 螺栓和螺丝可有松脱现象?

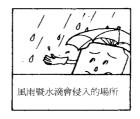
清查结果如有疑点,请立即与经销商或本公司联络。

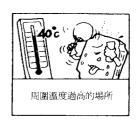
二. 技术指标

12/1/16		
序号	项 目	技术参数
1	电源电压	AC220V±10%
2	控制器功耗	3050W
3	伺服驱动器功率	3000W
4	伺服电机功率	3000W
5	伺服电机最高转速	2000RPM
6	测速编码器分辨率	2000P/R
7	竹节倍率	0.00~9.99 倍
8	节长与节距	理论上可任意设定
9	最大贮存品种	无限制
10	单品种竹节最大组数	200
11	纺纱模式	有规律、无规律、 随机型、模糊型、 智能型、专家型

三. 安装前的准备事项


- 1、注意事项
 - 使用竹节纱智能控制器时须注意小心;
 - 请切勿施力于触摸屏上;
 - 请切勿用尖锐物体点戳触摸屏。

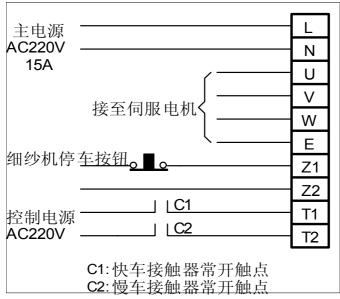

2、 安装环境要求



四. 配线

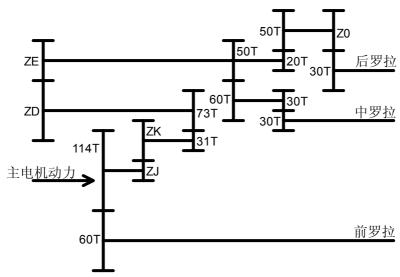
接线端子说明

1	2	3	4	5	6	7	8	9	10
L	N	U	V	W	Е	Z1	Z2	T1	T2

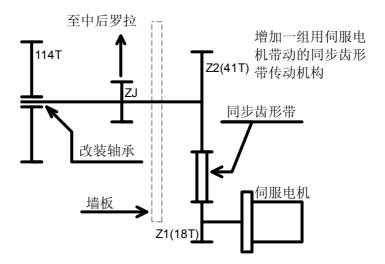

控制器接线端子

端子记号	端子名称	功能说明		
L	控制器主电源	市电 AC220V 输入。		
N	红的新土电你	L: 火线, N: 零线		
U		接至伺服电机,相 序不可接错, 否则将损坏伺服控制器和伺服 电机。		
V	一伺服电机输出			
W				
E		, Li / Li		
Z1	报警输出	继电器常闭点输出, 伺服控制		
Z2	1以言制山	器报警时触点断开。		
T1	控制电源	AC220V 控制电压输入,必须		
T2	了工的。但 <i>你</i>	与细纱机启动电机同步。		

测速编码器插座(5芯)


编号	说明
1	电源正(+24V)
2	信号1
3	屏蔽线
4	信号2
5	电源负(GND)

竹节纱控制器电气接线图


五. 机械改造及安装

细纱机改造前的机械传动图如下(以 A513 为例):

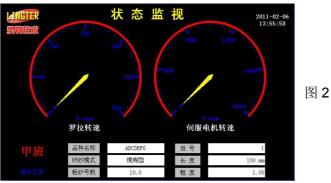
第 5 页

细纱机安装了竹节纱控制器后的机械传动图如下:

安装时的注意事项:

- 在安装或拆卸伺服电机时,不得用锤子敲打电机输出轴端,否则电机输出轴另一端的编码器容易损坏;
- 尽量将轴端对齐到最佳状态,否则可能导致振动或使轴承损坏:
- 伺服电机电缆接入竹节纱智能控制器时一定要确认相序,按照颜色 逐一接线,如接错线将损坏伺服电机和伺服控制器;
- 前罗拉测速编码器在安装过程中要轻拿轻放,如损坏后将不能启动 竹节纱控制器;
- 如果蝴蝶牙中间有单向轴承,则安装上去后,请保证中间的转轴单 方向旋转且转速快于蝴蝶牙转速时能灵活转动;
- 在合上竹节纱控制箱内的空气开关前,请确认控制箱电源输入端 L、N 之间的电压为 AC220V:
- 不同型号的细纱机,伺服电机正常运转时,从输出轴端看,电机轴旋转方向有所不同,请参考"轮系比的分析与计算"一节。如旋转方向不对,则应通过设定伺服控制器内部的参数来调整,绝对不能通过调整伺服电机电缆线的次序来调整电机的旋转方向。(这和普通三相异步电动机不同!!!)
- 安装了竹节纱控制器后,如果蝴蝶牙中安装有单向轴承,则轻重牙中的主动齿轮一般要换小,被动齿轮要换大。具体计算方法见"轮系比的计算与分析"一节。

六. 操作面板说明


本竹节纱智能控制器操作界面采用图标显示方式,并配以中文说明,一目了然,不需记忆,简单好学,操作极为方便。

1. 通电

竹节纱智能控制器通电后,显示屏上显示如下图 1 窗口:

待窗口下方进行图进至最右方(约 15 秒)后,显示屏转至如下图 2 窗口,也可以直接触摸图 1 窗口任意位置,直接进入图 2 窗口:

前罗拉转速表虽然刻度值最大为 300RPM, 但实际转速显示器最大仍可显示至 500RPM。

提示:在默认情况下,如果显示屏显示图 2 窗口 5 分钟不对其进行任何操作,则显示屏背景灯将熄灭,如点击显示屏任何位置背景灯会再次点亮。这将有助于延长背景灯的使用寿命。

图 2 窗口为正常显示的窗口,在此窗口上显示当前竹节纱控制器的一些基本工作状态,并可以进行下一步的操作。如果触摸屏和 PLC 通讯不正常或软件版本不匹配,则会出现如下图 3 窗口:

2. 功能设定

在图 2 窗口中点击左上方商标图标,出现如下图 4 窗口:

在此窗口中,共有八大功能:设备参数、运行数据、品种管理、辅助功能、产量统计、报警记录、工作模式和帮助。

3. 设备参数

在图 4 窗口中点击设备参数图标,出现如下图 5 窗口:

图 5

窗口右上角显示 ,表明所有参数处于锁住状态,不能修改。点击该图标,出现如下图 6 窗口:

图 6

输入正确的密码后,图5窗口变成图7窗口:

图 7

窗口右上角显示 ,表明所有参数处于解锁状态,可以重新设定和修改。

提示:凡是要修改数据和设定参数都需要先解锁,以下雷同。

设定参数时,直接点击图 7 窗口中的数据输入区,则出现如下图 8 窗口:

在数字键盘上输入数值后按"**确定**"键结束,则数值出现在刚才所 点击的数据输入区内。

- 罗拉直径: 5~300 毫米:
- 罗拉转速上限: 10~500 转/分钟:
- ■... 罗拉转速下限: 0~500 转/分钟;

运行时,罗拉转速在上、下限范围之外,竹节纱控制器就报警停车。不建议把前罗拉转速下限设定为 0,否则当编码器有故障时,控制器不会发出报警信号,可能会产生废纱。

- ■...细纱机型号:根据具体安装的细纱机型号设定;
- ■...编码器分辨率:测速编码器旋转一圈所产生的脉冲数;

必须和实际编码器的分辨率一致,否则所生产出来的竹节和基纱长度和设定值不一致,罗拉转速也和实际值不一致。

- ■...屏保延时时间:触摸屏背光灯点亮延时时间:
- ■...开机跟踪时间: 2.0~10.0 秒;
- ■...关机跟踪时间: 5.0~20.0 秒;

细纱机在开、关车时,会导致前罗拉转速不稳,竹节纱智能控制器 会在开、关车跟踪时间内不跟踪前罗拉转速,避免测速报警。同时伺 服电机在细纱机关车后的关车跟踪时间内继续保持和前罗拉同步,使 后罗拉跟随着前罗拉的停车惯性。

■...监测延时时间: 0.05~10.00 秒;

如果未启动竹节纱控制器而检测到前罗拉在监测延时时间内有连 续转速信号,则控制器报警停车。 ■...停车延时时间: 0.00~10.00 秒;

有些细纱机由于机械结构上的原因,在正常停车后中后罗拉会倒转一定的角度,导致中罗拉和前罗拉中间的纱线意外牵伸,在再次开车后会使纱线全部断头。设定此项参数后会使伺服电机带动中后罗拉在前罗拉停止后以 100RPM 的转速继续转动设定停车延时时间,杜绝纱线意外牵伸的发生。一般情况下此参数设定为 0:

- ■...启动提速幅度:启动瞬间,伺服电机立即响应的标准转速幅度;
- ■...提速延时时间: 电机启动提速的时间;

4. 运行数据

在图 4 窗口中点击运行数据图标,出现如下图 9 窗口:

图 9

在此窗口中可以设定竹节纱的一些属性参数:

- 品种名称: 当前运行品种的名称;
- 纺纱模式: 竹节纱运行模式, 共有有规律、无规律、随机型、模糊型、智能型、专家型六种模式, 纺纱模式详解见附录:
- 牵伸倍数: 粗纱到竹节纱基纱的牵伸倍数;
- 传动比: 伺服电机至后罗拉的减速比;
- 粗纱号数: 粗纱的纱号;
- 重量修正比例:对所纺竹节纱的重量进行修正;
- 长度修正方式: 比例修正, 对节长或节距按照所设定比例进行修正; 绝对修正, 对节长或节距按照所设定的修正值进行修正;
- 节长修正比例:长度修正方式设定为比例修正时才有效:
- 节距修正比例: 长度修正方式设定为比例修正时才有效;
- 节长修正值:长度修正方式设定为绝对修正时才有效;
- 节距修正值: 长度修正方式设定为绝对修正时才有效;

如果细纱机安装竹节纱控制器时使用了单向轴承,则牵伸倍数、 传动比和重量修正比例的设定有一些限定,(传动比×重量修正系数/ 牵伸倍数)必需要小于某一个数,具体请参照第七节。

在图 9 窗口中点击竹节数据图标,出现如下图 10 窗口:

序号	粗度下限	粗度上限	长度下限(mm)	长度上限(mm)
	1.00	1.00	100	100
	1.00	1.00	101	101
	1.00	1.00	102	102
	1.00	1.00	103	103
	2.00	2.00	104	104
	2.00	2.00	105	105
	2.00	2.00	106	106
	2.00	2.00	107	107

图 10

此窗口中主要显示正在工作的竹节纱的竹节数据,竹节数据共有 200 组,可以通过首页、上页、下页和末页进行翻页操作。竹节数据 和竹节纱属性参数可以进行修改,但修改后的的数据不会立即更新到 PLC 中去,只暂存在触摸屏内存中,如要立即生效,必须在图 9 窗口中点击数据更新图标。

图 10 窗口左侧图标主要为了方便数据设定而设。

- 竹节数据规则化:如果检测到下限大于上限,则两者对调;如果检测到上限、下限只有一个数据为 0,则此数据变更为另一非 0数据;如果检测到长度上下限数据都为 0,则从此组开始所有数据全部清 0。
- 粗度上下限一致: 把粗度下限复制到上限。
- 长度上下限一致: 把长度下限复制到上限。
- 单数组粗度一致: 把第 1 组的粗度上下限复制到其它单数组粗度上下限中去。
- 双数组粗度一致: 把第 2 组的粗度上下限复制到其它双数组粗度上下限中去。
- 点击序号,则把上一组粗度的上下限复制到本组。

在图 9 窗口中点击**储存数据**图标,出现图 11 窗口。此功能主要用于把 PLC 内或触摸屏内存的竹节数据作为一个竹节品种存储为一个

文件, 并且把这个文件储存在触摸屏中。

在图 9 窗口中点击**数据更新**图标,则更新 PLC 中的竹节数据。结合**储存数据**图标,在新品种调试时极为方便:根据做出来的竹节纱调整数据,点击**数据更新**图标,重新试纺竹节纱,直到符合要求,然后点击**储存数据**图标,把最新的品种数据以一个文件的形式保存在触摸屏中。

图 11

5. 品种管理

在图 4 窗口中点击品种管理图标,出现如下图 12 窗口:

中央列表窗口显示储存在触摸屏、U 盘(U 盘需插在触摸屏背面 USB 接口上)和本地磁盘(用于模拟显示)上的所有的竹节品种文件。每个品种文件有文件名称、存储位置和文件大小三项属性。在同一个存储位置上文件名称不能同名。

列表窗口支持通用名称查询,在关键字区域输入要查询文件名称的

前若干个字母或文字,则列表窗口会显示所有指定关键字开始的品种文件。

例如在关键字输入区输入关键字 AB,则列表窗口显示所有以字母 AB 开头的品种文件,如图 13 窗口所示:

图 13

在列表窗口中点击一品种文件,使之反显,就可以对所选中品种文件进行复制、删除和数据设定操作。

在图 12 窗口中点击品种复制图标,出现如下图 14 窗口:

图 14

如选择的文件储存在触摸屏中,则会显示触摸屏至 U 盘的复制,如选择的文件储存在 U 盘中,则会显示 U 盘至触摸屏的复制。

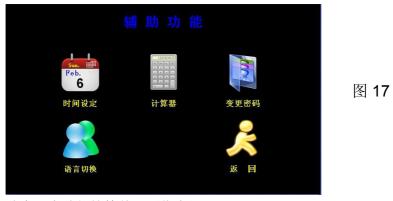
在图 12 窗口中点击品种删除图标,出现如下图 15 窗口:

图 15

在图 12 窗口中点击确认图标,出现如下图 16 窗口:

图 16

此窗口中相关数据和图 9 窗口类似,在此不再作介绍。


点击**品种更换**图标,则把所选择的品种数据传入 PLC 中去。点击**保存返回**图标,则把当前品种数据存储一次,并返回到图 12 窗口。点击**取消返回**图标,则不作存储直接返回到图 12 窗口。

如要增加新品种,只要在图 12 窗口中点击**新增品种**图标就可以了。 品种名称不得含有下列符号:

/ \ | " ? *

6. 辅助功能

在图 4 窗口中点击辅助功能图标,出现如下图 17 窗口:

此窗口中功能较简单,不作介绍。


7. 产量统计

在图 4 窗口中点击产量统计图标,出现如下图 18 窗口:

8. 报警记录

在图 4 窗口中点击报警记录图标,出现如下图 19 窗口:

第 16 页

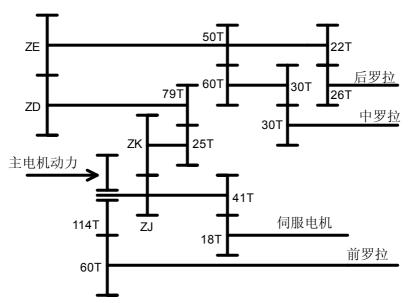
竹节纱控制器在使用过程中任何报警都将记录在此记录表中,包括报警所发生的时间和报警内容。点击右上角 U 盘图标,则可把报警记录导出到 U 盘中。

9. 工作模式

在图 4 窗口中点击工作模式图标,出现如下图 20 窗口:

图 20

竹节纱控制器共有四种工作模式:环锭纺正常纱、环锭纺竹节纱、转杯纺正常纱、转杯纺竹节纱。控制器内部电气连接一般默认为环锭纺工作模式,如要设定为转杯纺工作模式,控制器内部必需电气作更改,否则无法正常工作。


七. 计算与分析

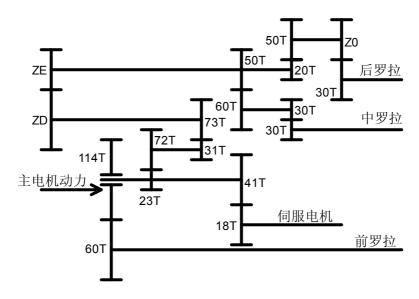
如果细纱机安装竹节纱控制器是采用了单向轴承,则在设定品种数据时有三个参数是需要与机械部分统筹考虑的:传动比、牵伸倍数和重量修正比例。**假设 L=传动比×重量修正系数/牵伸倍数,**则 L 必需大于伺服电机至前罗拉的传动比。

下面就针对市场上几种常见型号的细纱机分别作出举例说明:

1... FA502

经过安装竹节纱控制器后的细纱机传动图如下:

伺服电机转轴应逆时针旋转,否则请重新设定伺服控制器内部的参数。如果蝴蝶牙中安装了单向轴承,蝴蝶牙中的转轴转速必须快于蝴蝶牙的转速,因此伺服电机的转速必须高于某一最低转速,否则会引起伺服电机和伺服控制器损坏。假设纺基纱时蝴蝶牙中的转轴的转速和蝴蝶牙的转速一样,根据传动图,可以得出以下关系:


$$N_{\text{fl}} = \frac{(41 \times 60)}{(18 \times 114)} \times N_{\text{ii}}$$

= 1.2 N_{ii}

所以 L 必须大于 1.2,才能保证蝴蝶牙中的转轴转速快于蝴蝶牙的转速。

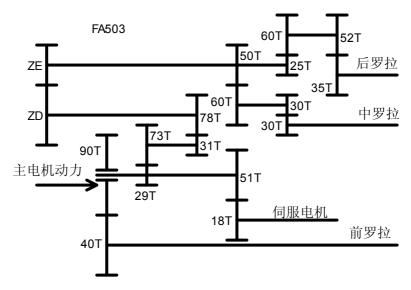
传动比 =
$$\frac{(26 \times ZE \times 79 \times ZK \times 41)}{(22 \times ZD \times 25 \times ZJ \times 18)}$$

= $8.506 \times \frac{(ZE \times ZK)}{(ZD \times ZJ)}$

2... A513

经过安装竹节纱控制器后的细纱机传动图如下:

伺服电机转轴应逆时针旋转,否则请重新设定伺服控制器内部的参数。如果蝴蝶牙中安装了单向轴承,蝴蝶牙中的转轴转速必须快于蝴蝶牙的转速,因此伺服电机的转速必须高于某一最低转速,否则会引起伺服电机和伺服控制器损坏。假设纺基纱时蝴蝶牙中的转轴的转速和蝴蝶牙的转速一样,根据传动图,可以得出以下关系:


$$N_{fi} = \frac{(41 \times 60)}{(18 \times 114)} \times N_{ii}$$

= 1.2 N_{iii}

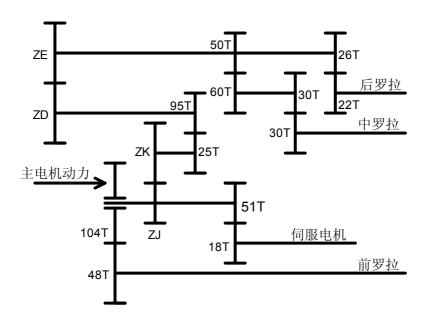
所以 L 必须大于 1.2, 才能保证蝴蝶牙中的转轴转速快于蝴蝶牙的转速。

传动比 =
$$\frac{(30\times50\times ZE\times73\times72\times41)}{(Z0\times20\times ZD\times31\times23\times18)}$$
$$= 1259.327\times \frac{ZE}{ZD\times70}$$

3... FA503

经过安装竹节纱控制器后的细纱机传动图如下:

伺服电机转轴应逆时针旋转,否则请重新设定伺服控制器内部的参数。如果蝴蝶牙中安装了单向轴承,蝴蝶牙中的转轴转速必须快于蝴蝶牙的转速,因此伺服电机的转速必须高于某一最低转速,否则会引起伺服电机和伺服控制器损坏。假设纺基纱时蝴蝶牙中的转轴的转速和蝴蝶牙的转速一样,根据传动图,可以得出以下关系:


$$N_{\text{fl}} = \frac{(51 \times 40)}{(18 \times 90)} \times N_{\text{ii}}$$
$$= 1.26 N_{\text{ii}}$$

所以 L 必须大于 1.26,才能保证蝴蝶牙中的转轴转速快于蝴蝶牙的转速。

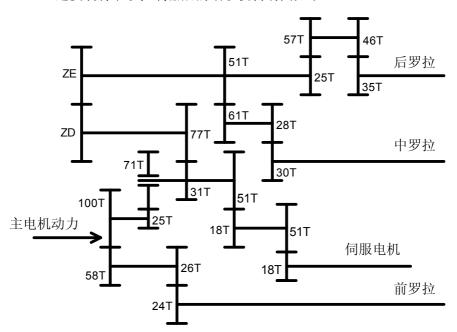
传动比 =
$$\frac{(35\times60\times ZE\times78\times73\times51)}{(52\times25\times ZD\times31\times29\times18)}$$
$$= 28.989\times\frac{ZE}{ZD}$$

4... FA506

经过安装竹节纱控制器后的细纱机传动图如下:

伺服电机转轴应顺时针旋转,否则请重新设定伺服控制器内部的参数。如果蝴蝶牙中安装了单向轴承,蝴蝶牙中的转轴转速必须快于蝴蝶牙的转速,因此伺服电机的转速必须高于某一最低转速,否则会引起伺服电机和伺服控制器损坏。假设纺基纱时蝴蝶牙中的转轴的转速和蝴蝶牙的转速一样,根据传动图,可以得出以下关系:

$$N_{\text{fl}} = \frac{(51 \times 48)}{(18 \times 104)} \times N_{\text{fl}}$$


$$= 1.308 N_{\text{fl}}$$

所以 L 必须大于 1.308,才能保证蝴蝶牙中的转轴转速快于蝴蝶牙的转速。

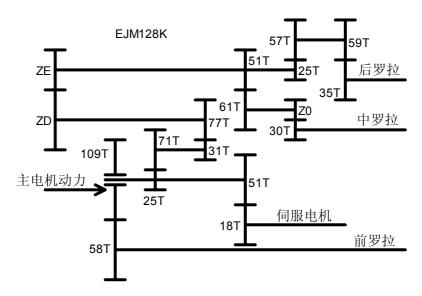
传动比 =
$$\frac{(22 \times ZE \times 95 \times ZK \times 51)}{(26 \times ZD \times 25 \times ZJ \times 18)}$$

= $9.11 \times \frac{(ZE \times ZK)}{(ZD \times ZJ)}$

5. FA507

经过安装竹节纱控制器后的细纱机传动图如下:

伺服电机转轴应顺时针旋转,否则请重新设定伺服控制器内部的参数。如果 71T 齿轮中安装了单向轴承,齿轮中的转轴转速必须快于齿轮的转速,因此伺服电机的转速必须高于某一最低转速,否则会引起伺服电机和伺服控制器损坏。假设纺基纱时 71T 齿轮中的转轴的转速和齿轮的转速一样,根据传动图,可以得出以下关系:


$$N_{\text{fi}} = \frac{(51 \times 51 \times 25 \times 58 \times 24)}{(18 \times 18 \times 71 \times 100 \times 26)} \times N_{\text{fi}}$$

= 1.52 N_{fi}

所以 L 必须大于 1.52, 才能保证 71T 齿轮中的转轴转速快于齿轮的转速。

传动比 =
$$\frac{(35\times57\times ZE\times77\times51\times51)}{(Z0\times25\times ZD\times31\times18\times18)}$$
$$= 1591.209\times \frac{ZE}{ZD\times Z0}$$

6... EJM128K

经过安装竹节纱控制器后的细纱机传动图如下:

伺服电机转轴应逆时针旋转,否则请重新设定伺服控制器内部的参数。如果蝴蝶牙中安装了单向轴承,蝴蝶牙中的转轴转速必须快于蝴蝶牙的转速,因此伺服电机的转速必须高于某一最低转速,否则会引起伺服电机和伺服控制器损坏。假设纺基纱时蝴蝶牙中的转轴的转速和蝴蝶牙的转速一样,根据传动图,可以得出以下关系:

$$N_{\text{fl}} = \frac{(51 \times 58)}{(18 \times 109)} \times N_{\text{fl}}$$

= 1.51N _{fl}

所以 L 必须大于 1.51,才能保证蝴蝶牙中的转轴转速快于蝴蝶牙的转速。

传动比 =
$$\frac{(35\times57\times ZE\times77\times71\times51)}{(59\times25\times ZD\times31\times25\times18)}$$
$$= 27.033\times \frac{ZE}{ZD}$$

八. 保养检查及注意事项

- 每次开车前,请检查所纺品种及纺纱模式是否正确,确认后方可 正常开车。
- 竹节纱控制箱上的散热风扇滤网请每天清洁一次,以保证控制器的散热通畅。
- 前罗拉测速编码器如果安装不良,会导致测速不准,极易产生废纱。安装时同步带应松紧适合,主、被动轮应在同一平面上。值车工在生产和清洁过程中应尽量避免抨击编码器。
- 如果细纱机主电机为变频调速,请适当调整变频器的加减速时间和竹节纱控制器的开关车跟踪时间,使变频器的加减速时间小于竹节纱控制器的开关车跟踪时间。
- 如果不纺竹节纱,可将"工作模式"中设定成"正常纱"即可。 也可**把竹节纱控制器电源关掉,并把伺服电机的同步齿行带拆下, 否则将损坏伺服电机和伺服控制器,**同时将轻重牙更换为原来的轻 重牙,蝴蝶牙更换为原来的蝴蝶牙。强烈推荐采用后一种方式,这 对于延长竹节纱控制器的使用寿命大有好处。
- 传动同步带尽量不要接触油污,有助于延长其使用寿命。
- 如果竹节纱控制器停车保护,请根据显示屏上提示的内容进行检 查和维修。
- 对触摸屏进行操作时,切勿使用尖锐的物体点戳触摸屏。
- 禁止无关人员打开本竹节纱控制器箱体及操作显示屏。

九. 附录

1、伺服控制器的报警代码和故障原因:

号	报警代码	报警说明
1	AL-01	电源电压低于 AC180V。
2	AL-02	电源电压高于 AC240V 或回生电压过大。
3	AL-03	伺服电机过载。
4	AL-04	智能模块(IPM)异常。
5	AL-05	伺服电机编码器故障或编码器反馈线接触不良。
6	AL-06	编码器 UVW 信号异常。
7	AL-07	多功能输入点设定异常。
8	AL-08	伺服控制器参数设定时写入错误。
9	AL-09	紧急停止动作。
10	AL-10	伺服电机过电流。
11	AL-11	伺服电机编码器计数偏差过大。
12	AL-12	伺服电机转速超过 2400RPM
13	AL-13	CPU 异常。

14	AL-14	驱动禁止异常,CN1_PN4、PN5 输入点同时开路。
15	AL-15	驱动器过热

当出现报警显示窗口时,如点击触摸屏上的报警解除按钮仍不能解除故障现象,则把控制器的电源切断,待伺服控制器显示器熄灭后再次上电,如仍不能顺利解除故障,则伺服控制器或伺服电机需要检修。

当伺服电机出现过载或过流现象,应当首要检查伺服电机有没有 卡死现象,单向轴承是否卡死,轮系比设定得是否太小,竹节粗度是 否太大等

2、变更竹节的节形:

有些竹节节形有特殊要求,需要对伺服控制器的参数进行变更。 变更步骤如下:

- a) 点按伺服控制器面板的"MODE"键, 使显示器显示 Pn301:
- b) 点按"▲"键或"▼"键, 把参数编号调到 Pn313;
- c) 点按"ENTER"键, 使显示器显示 Pn313 的参数值"10"; ("10" 为出厂设定值)
- d) 点按"▲"键或"▼"键, 把参数值改到所需要的数值;
- e) 点按 "ENTER"键,参数值写入完成;
- f) 切断控制器的电源, 待伺服控制器显示器熄灭后再次上电即可;
- g) Pn313 参数值越大, 竹节节形过渡越平缓, 反之越陡。

3、变更伺服电机的旋转方向:

不同的细纱机要求伺服电机有不同的旋转方向,如要变更电机的旋转方向,则需要对伺服控制器的参数进行变更,切不可随意调换伺服电机的输入线 U、V、W、E。变更步骤如下:

- a) 点按伺服控制器面板的"MODE"键,使显示器显示 Pn301;
- b) 点按 "▲"键或 "▼"键, 把参数编号调到 Pn314;
- c) 点按 "ENTER"键, 使显示器显示 Pn314 的参数值 "0";
- d) 点按"▲"键或"▼"键,把参数值改到所需要的数值;
- e) 点按"ENTER"键,参数值写入完成;
- f) 切断控制器的电源,待伺服控制器显示器熄灭后再次上电即可:
- g) 当 Pn314 参数值为"1"时,伺服电机逆时针旋转;当 Pn314 参数值为"0"时,伺服电机顺时针旋转。

4、设置正常而未产生竹节的几种常见原因:

- a) 控制器内部 PLC 运行开关未拨到 RUN 位置, PLC 上指示灯 呈橙色指示:
- b) PLC 未运行,其左上角指示灯呈非绿色显示;
- c) 没有同步控制电压施加到 T1 或 T2 端;
- d) 编码器损坏,没有脉冲输出或脉冲输出不正常;
- e) 竹节粗度为 1.00。
- f) 纱型设定为"正常纱";
- g) AC220V 继电器损坏,或其触点接触不良;
- h) 同步带断裂。

5、竹节纱常用计算公式:

号数为 1000 米纱线在公定回潮率下所具有的重量克数

纱线支数与号数之间的换算关系:

- ① 把竹节纱上的竹节和基纱剪下来,按次序分别作好长度记录:
- ② 记录好足够多的数据后分析其有无规律性;
- ③ 把所有剪下的竹节在扭力天平上称重,得总重量 W, 把所有剪下的竹节的长度累加,得总长度 L, 求出竹节的纱号:

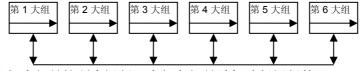
$$\Sigma$$
竹节重量W(克)
 Σ 竹节长度L(千米) = 竹节纱号数

④ 用同样的方法求出基纱的纱号;

⑤ 竹节纱平均号数为:

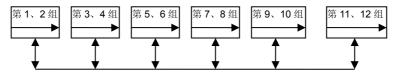
一个循环内基纱总长度+一个循环内竹节总长度×竹节粗度 一个竹节纱循环总长度

注意点:


在样纱分析时应注意样纱是筒子纱还是纱管纱,因为两者的次序 是相反的。

7、纺纱模式详解:

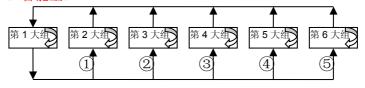
0: 有规律:



1: 无规律:

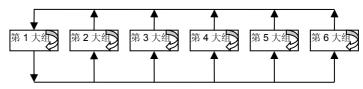
大组内部是按顺序运行,大组之间是随机选择运行的。

2: 随机型:



从第 1 小组开始每两小组作为一大组,大组内部是按顺序运行的,大组之间是随机选择运行的。

3: 模糊型:



4: 智能型:

大组内部是随机选择一小组运行,大组之间按照 1.2、1.3、1.4、 1.5 、1.6 顺序循环进行。

5: 专家型:

大组内部是随机选择一小组运行,第1大组与其他大组之间是交替 选择运行,第2大组开始随机选择。

无规律的大组划分规则:与第一小组粗度完全一致的小组作 注: 为下一大组的起点。

模糊型、智能型、专家型的大组划分规则: 若干相邻组粗 度完全一致的小组自动分为一大组。

- 承蒙您购买 FLZ 系列竹节纱智能控制器, 谨表 衷心感谢;
- 本装置为细纱机竹节产生控制器,本手册就该装置安装了版本为 V1.00 软件后的使用方法加以说明:
- 虽然使用操作简单,但操作错误会引起意外故障,缩短装置使用寿命,降低其性能。因此恳请在使用前务必仔细阅读本手册,做到正确使用,长期爱护;
- 请保存好本手册:
- 请务必将本手册交到最终用户手中。

无锡市灵特电子仪器设备有限公司

地址: 江苏省无锡市民丰路 198号 616室

邮编: 214045

电话: 0510 - 88707264 88704838

传真: 0510 – 88704838 网址: www.lingter.com.cn